1. Basic Concepts

1.1 Introduction:

Structural Engineering

Analysis (SOM, SA)

- Equilibrium
- Compatibility
- Energy

Design
(RCC, PSC, steel)

- Safety
- Serviceability
- Durability
- Economy
- Asthetic

i) Safely:

A structure must be safe with appropriate factor of safety [FOS] for loading that may come on it during its intended life.
ii) Serviceability:

A structure should provide the service for which it is constructed.
iii) Durability:

A structure should sustain loading for which it was designed and should perform well with safety and serviceability unto its whole life

Durability without serviceability or less margin of safely [FOS] iv> has no meaning

iv) Economy:

Design and construction of any structure should be economical without affecting safely, serviceability and durability.
v) Asthenic:

If huge investment is involved in design and construction
of a structure then asthetic also plays an important role.

Ex. Considering a beam:
i) Safety: Reinforcement is provided
ii) Serviceability: Doubly reinforced section instead of singly reinforced section to reduce depth of section.
iii) Durability: Nominal cover, selection of material.
iv) Economy: Monolythic casting of beam and slab designed as T section.
v) Asthetic: Half round section instead of rectangular section.
1.2 Cement Concrete:

It is a mixture of binding material [cement], fine aggregate, [sand], coarse aggregate, water and admixture in proper proportion to achieve concrete of desired properties at fresh state and hardened state.
1.2.1 Concrete Mix:
a) Nominal Mix:

- Based on experience.
- Mixing may be by weight or by volume. By weight is preferable
- Quantity of water is not fixed. It is provided as per site requirement.
- Nominal mix is allowed for M5 to M20.

	C	$F A$	$C A$
$M 10$	1	3	6
$M 15$	1	2	4
$M 20$	1	1.5	3

b) Design Mix:

- Based on calculation as per. IS 10262 (2009)
- Proportioning must be by weight.
- Quantity of water is also fixed
- Design mix is allowed for M10 to M100.

1.2.2 Fresh Concrete:

Workability is the most important property of fresh concrete which is simply defined as "Ease to work with."

Sr. No.	Degree of Workability	Use	Slump	Compacting factor	Vee-bee time
1.	Very low	- Road Construction. - Shallow Section.	-	$0.75-0.8$	10-20
2.	Low	- Mass concreting. - Lightly reinforced section	25-75	$0.8-0.85$	5-10
3.	Medium	- Heavily reinforced section - Concreting by concrete pump.	50-100	0.85-0.92	2-5
4.	High	- Piling	100-150	0.92-above	-
5.	Very High	- Tremie pipe concreting.	-	0.92 -above	-

* Tremie pipe concreting:

* Workability of Concrete can $\mathbf{5}$ of $\mathbf{3 2 6}$ as cred by following methods.

1. Slump test
2. Compacting factor Test
3. Vee-bee Test
4. Flow Test

1.2.3 Hardened Concrete:

After final setting time, concrete is assumed to be hard and it keeps on gaining strength for very long time [1 to 5 years]
a) Compressive Strength of Cube:

This is the compressive strength of cube size 150 mm subjected to uniaxial compression after 28 days from day of casting.
b) Characteristic Compressive strength of Cube:

It is the strength below which not more than 5% test results are expected to fall.

$$
f_{t}=\underbrace{}_{c k} \frac{4}{f_{t}=f_{c k}+k S}
$$

