1. Basic Concepts

1.1 Introduction:

Structural Engineering

Analysis (SOM, SA)

- Equilibrium

- Compatibility

- Energy

Design

(RCC, PSC, Steel)

- Safety

- Serviceability

- Durability

- Economy

- Asthetic

i> Safety:

A structure must be safe with appropriate factor of safety [FOS] for loading that may come on it during its intended life.

11) Serviceability:

A structure should provide the service for which it is constructed.

iii) Durability:

A structure should sustain loading for which it was designed and should perform well with safety and serviceability upto its whole life

Durability without serviceability or less margin of safety [Fos] in has no meaning

iv> Economy:

Design and construction of any structure should be economical without affecting safety, serviceability and durability.

v) Asthetic:

If huge investment is involved in design and construction

of a structure then asthetic also plays an important role.

Ex. Considering a beam:

- i) Safety: Reinforcement is provided.
- ii) Serviceability: Doubly reinforced section instead of singly reinforced section to reduce depth of section.
- iii) Durability: Nominal cover, selection of material.
- iv) Economy: Monolythic casting of beam and slab designed as T-section.
- v) Asthetic: Half round section instead of rectangular section.

1.2 Cement Concrete:

It is a mixture of binding material [cement], fine aggregate, [sand], coarse aggregate, water and admixture in proper proportion to achieve concrete of desired properties at fresh state and hardened state.

1.2.1 Concrete Mix:

- a) Nominal Mix:
 - Based on experience.
 - Mixing may be by weight or by volume. By weight is preferable
 - Quantity of water is not fixed. It is provided as per site requirement.
 - -Nominal mix is allowed for M5 to M20.

			1-2 -
	C	FA	CA
MIO	1	3	6
M15	1	2	4
M20	1	1.5	3

b) Design Mix:

- Based on calculation as per IS10262 (2009)
- Proportioning must be by weight.
- Quantity of water is also fixed.
- Design mix is allowed for M10 to M100.

1.2.2 Fresh Concrete:

Workability is the most important property of fresh concrete which is simply defined as "Ease to work with."

Sr. No.	Degree of Workability	Use	Slump	Compacting Factor	time
1.	Very low	- Road Construction. - Shallow Section.	-	0.75 - 0.8	(sec) 10-20
2.	Low	Mass concreting.Lightly reinforced section	25-75	0.8 - 0.85	5-10
3.	Medium	- Heavily reinforced section - Concreting by concrete pump.	50-100	0.85-0.92	2~5
4.	High	- Piling	100-150	0.92-above	-
5.	Very High	- Tremie pipe concreting.	-	0.92-above	_

* Workability of Concrete can be measured by following methods. 3. Vee-bee Test

1. Slump test

2. Compacting factor Test 4. Flow Test

1.2.3 Hardened Concrete:

After final setting time, concrete is assumed to be hard and it keeps on gaining strength for very long time [1 to 5 years]

a) Compressive Strength of Cube:

This is the compressive strength of cube size 150 mm subjected to uniaxial compression after 28 days from day of casting.

b) Characteristic Compressive Strength of Cube:

It is the strength below which not more than 5% test results are expected to fall.

$$f_t = f_{ck} + KS$$